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Abstract   This tutorial describes the basic concepts behind binary stars, Kepler’s Three Laws of Planetary 
Motion (and binary star motion), and the vital role binary star orbits play in determining stellar mass. The 
primary source of past published binary star observations, the Washington Double Star Catalog, is 
illustrated with an example, HU 481 (WDS 1612+2259). An image of the apparent orbit of HU 481, 
published in the Sixth Catalog of Orbits of Visual Binary Stars, is described in detail, along with instructions 
on inserting it as a background into Desmos that, via rotation, scaling, and translation, precisely matches 
Desmos’ Cartesian coordinates. Observations of HU 481 not included in these graphs were added via 
Desmos. An apparent orbit ellipse was created in Desmos that matched the published apparent ellipse, 
while a new ellipse was created that better matched recent observations of HU 480, as they appeared to 
be going off the published orbit’s track.  

 

1. Binary Stars 
 

Binary stars are gravitationally bound pairs of stars that rotate around their common center of mass. 
Astrometry “… a branch of astronomy that involves precise measurements of the positions and 
movements of stars and other celestial bodies” (Wikipedia 2023a) is used to analyze the motions of the 
two stars over time. Johannes Kepler’s Three Laws of Planetary Motion, which he developed to describe 
our solar system, also apply to binary stars. Kepler’s First Law establishes that the shape of the orbit is an 
ellipse. His Second Law states that the speed of each star varies throughout its orbit, with equal areas 
being swept out in equal times. Kepler’s third law—which relates the period of rotation, the semi-major 
axis of the ellipse, and the mass of the two stars—can then be used to determine the mass of the two 
stars, once the period and semi-major axis are established via observations and analysis.  
 

(m1 + m2) = a3 / P2 
 

where 
m1 and m2 are the masses of the primary and secondary stars, respectively, in solar masses 
a is the semi-major axis of the true ellipse in astronomical units 
P is the period in years 
 

Binaries have been observed at high magnification with telescopes since 1781 (Herschel 1785). Each 
observation consists of measuring the angle the secondary (fainter) star makes with respect to the primary 
(brighter) star and celestial north (the position angle in degrees), and the separation between the two 
stars (in arc seconds, an angular measurement) as shown in Figure 1. The observed position angles and 
separations, gathered over decades or centuries, can then be used to determine the parameters of an 
apparent elliptical orbit via Kepler’s First Law. 
 

Kepler’s Second Law can then be used to transform an apparent orbit into a true orbit, while Kepler’s 
Third Law can be used to calculate the sum of the stellar masses (m1 + m2). Kepler’s three laws are 
summarized in Figure 2. Parsing this sum into individual masses is the last step in this long process, and is 
usually accomplished through the analysis of a radial velocity curve of the binary (a topic beyond the scope 
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of this paper). The end result—the accurate knowledge of stellar masses made possible by the orbital 
analysis of binaries—is the key to understanding the life cycles of stars, i.e., how they evolve over time. 
 

 
 

Figure 1: Position angle and separation for a binary star. 
 

 
 

Figure 2: Illustrations of Kepler’s Three Laws of Planetary Motion. 
 

For many decades, the United States Naval Observatory (USNO) has served the international astronomical 
community by compiling all published observations of double stars into the Washington Double Star 
(WDS) Catalog (2023). Stars that at first appear to be single can, when viewed through a telescope at high 
magnification, be seen as two stars. Many of these double stars are far apart in space and only appear 
close together in the sky because of their chance alignment along the line of sight from Earth. These are 
referred to as optical doubles and are of limited scientific interest. However, as discovered by William 
Herschel (1803), some of these stars are not only close together, but they are rotating around a common 
center of gravity. Herschel named these gravitationally bound stellar pairs binaries. 
 

Binaries fall into two major categories: suspected and confirmed binaries. Suspected binaries may be 
gravitationally bound, but no analytically derived equation for their elliptical orbit has yet been 
published for any of several reasons: there may be too few observations to compute an orbit, not much 
of an orbit has been observed yet, or the points are too scattered or confusing to make the orbital 
computation and publication worthwhile. 
 

Confirmed (known) binaries, on the other hand, have published orbits. As another service to the 
international astronomical community, the USNO publishes the Sixth Catalog of Orbits of Visual Binary 
Stars (Matson et al. 2023). This catalog, often referred to as the 6th Orbit Catalog, provides a binary’s 
orbital elements. These seven elements are the parameter values for the ellipse equation that shows the 
true orbit as it would be seen if it were viewed face-on from outer space, as well as parameters that 
describe how the orbit is tilted with respect to the line-of-sight from Earth. This catalog also provides a 
plot (graph) of the tilted ellipse (the apparent orbit) as seen from Earth. This plot allows one to tell, at a 
glance, how well the apparent ellipse fits the observations. 
 

The Desmos graphing calculator routine described in this paper analyzes the apparent orbits, assumed to 
be elliptical per Kepler’s First Law. The challenge in this analysis is creating an ellipse that matches the 
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observations, i.e., matches the plotted points which are the changing position angles and separations 
between the two stars in the binary pair over time. This Desmos routine provides five sliders—one for 
each of the five parameters that describe a translated and rotated ellipse in the Desmos Cartesian plane. 
These sliders can be iteratively adjusted until an apparent ellipse is found that is a good match to the 
observations. 
 

To use Kepler’s Third Law to determine stellar mass, we must know the orbital period and the semi-major 
axis of the true orbit. Fortunately, Kepler’s Second Law—equal areas being swept out in equal times—can 
be used to transform an apparent orbit into a true orbit as it would be seen if it were viewed face-on from 
outer space. This transformation requires solving Kepler’s Equation. This transcendental equation does 
not have a direct algebraic solution, so Kepler (1609) made laborious successive approximations to solve 
for the true orbit of Mars. Newton’s subsequent invention of calculus produced a more efficient method, 
based on successive derivatives, that rapidly converge on a true orbit solution. Obtaining true orbits is 
beyond the scope of this paper. Please refer to Rowe et al. (2024) and Romero (2024) for two 
computerized iterative solution techniques. The focus of the paper is entirely on Desmos' analysis of 
apparent orbits. Since the USNO’s plots of a known binary is the starting point for this graphical analysis, 
a detailed description of these plots is in order. 
 
2. Binary Star Plots from the 6th Orbit Catalog 
 

The apparent orbit plot from the Sixth Orbit Catalog for the binary WDS 16212+2259, used as the example 
for Desmos analysis in this paper, is shown in Figure 3. The number of the binary in the WDS Catalog (WDS 
16212+2259) is provided in the upper left corner. When this binary, previously thought to be a single star, 
was first reported in a publication to be a double star, it was assigned its WDS number based on its Right 
Ascension (RA) of 16 hours and 21.2 minutes, and Declination (Dec) of 22 degrees and 59 minutes. The 
discoverer code, HU 481, was also assigned (HU 481 for William Hussey’s 481st discovery). In the upper 
right corner is a reference to the paper where the latest orbit was published, Hrt2010a (a paper by William 
Hartkopf in 2010). The “a” indicates that this was the first published orbit for this binary. Later orbital 
solutions would have been assigned b, c, d, etc., but since this is the only one listed, it is also the latest 
published orbital solution. 
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Figure 3: The apparent orbital plot of WDS 18044+0337 downloaded from the 6th Orbit Catalog. 
 

The tick marks around the border of the chart are in arcseconds or fractions of an arcsecond. The 
horizontal and vertical zero points on the margins are aligned with the large + mark which is the location 
of the primary star. The measurements of the secondary (fainter star) are reported relative to the primary 
star, ignoring any actual motion in the sky of the primary star itself. This is done because it is much easier 
and more precise to measure relative positions between close stars rather than their absolute positions 
in RA and Dec. 
 

The notation in the lower right corner of the plot provides the orientation of the plot with respect to 
celestial north; north being down and east to the right. The curved arrow shows the secondary star’s 
direction of rotation relative to the “fixed” primary star, clockwise in this case. 
 

The parameters that defined the true, face-on ellipse of the orbit were a best-fit calculation made by 
Hartkopf in 2010 based on the 84 published observations of this binary over 113 years from its discovery 
in 1902 to its (then) last reported observation in 2009. These parameter values, the orbital elements, are 
reported in the 6th Orbit Catalog. The black ellipse in the orbital plot is not the true face-on ellipse, but 
rather the reoriented (tilted) ellipse as it appears when viewed from Earth. 
 

If Hartkopf’s estimate of the orbital parameters was accurate, the observations of the secondary star over 
time would track the apparent ellipse around the primary star. While Hartkopf did the best he could in his 
2010 paper to account for the then-published observations, subsequent observations (as we will see) 
deviated from his published ellipse. If several subsequent observations deviate from the ellipse in a 
coordinated manner, revising the orbital parameters to fit a new, better-fitting ellipse may be in order. 
 

The black dashed line that passes through the primary star + is the line of nodes that shows where the 
plane of the true orbit intersects the plane of the apparent orbit. In other words, it is the hinge line that 
the true orbit is tilted about to obtain the apparent orbit. 
 

Observations are color-coded. Each visual observation with filar a micrometer is shown as a green +, the 
blue dots are for speckle interferometry observations, while the red H is for a 1991 observation made by 
the European Space Agency’s Hipparcos astrometric telescope. 
 

Each observation is plotted as the angular distance of the secondary star from the primary star (their 
separation, r, in arcseconds) and the position angle of the secondary star (θ) with respect to the primary 
star and celestial north. Note the lines connecting the observational points to the black apparent orbit 
ellipse. These lines touch the ellipse at the point in time where the orbital equation predicts that the the 
secondary star should have been. 
 

As can be readily concluded from the plot, the green + visual observations were not very accurate in 
comparison to the blue dot speckle observations and red H astrometry space telescope observations. This 
disparity was primarily due to three factors. 
 

First, visual observations (green +) were limited by the capabilities of the human eye as a detector. The 
eye’s exposure time is fixed and can’t be made longer to gather photons for observing fainter stars, or 
shorter to avoid atmospheric-induced motion smearing. Also, the quantum efficiency of the human eye is 
only about 10%, while that of a good electronic camera these days is about 90%. 
 

Second, the refractor telescopes used in early observations generally had smaller apertures than the 
reflecting telescopes used in later observations, thus having lower resolution. This made it difficult for 
close binary stars to appear as two distinct stars in smaller-aperture telescopes. 
 

Third, and of greatest importance, advances in technology allowed the adverse effects of poor seeing to 
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be greatly reduced or eliminated. Seeing … “is the degradation of the image of an astronomical object due 
to turbulence in the atmosphere of Earth that may become visible as blurring, twinkling, or variable 
distortion” (Wikipedia, 2023b). Seeing problems can be eliminated by placing telescopes above the 
atmosphere, as has been done with the Hipparcos (red H) and (more recently) the European Space 
Agency’s Gaia astrometric telescopes. Placing telescopes in space is expensive, however. Anton Labeyrie 
(1970) showed that a series of very short exposures (just tens of milliseconds) could eliminate atmospheric 
smearing in ground telescope images. While each image was filled with speckles due to the different paths 
that light could take through the many small air cells of different temperatures and refraction, hundreds 
or thousands of short-exposure images could be processed mathematically via a fast Fourier transform to 
produce an image much like one would have obtained if there were no atmosphere. This process is termed 
speckle interferometry (blue dots). 
 

Given these three factors, it is not surprising that large reflecting telescopes (equipped with modern 
electronic cameras making speckle interferometric measurements) can provide much more accurate 
astrometric measurements than visual micrometer measurements. 
 
3. Desmos Background 6th Orbit Plot 
 

To initiate the Desmos analysis of binary stars, a new graph is started or, better yet, an existing graph can 
be downloaded and used as a template. Starting with a binary star analysis template has the advantage 
that all the needed equations and other expressions are already in place. The graph for this example, WDS 
18044+0337 is available at https://www.desmos.com/calculator/aeem8b6oj4. It might be noted that 
graphs created in Desmos can be tagged with a URL and shared with others (a permalink). 
 

Once the graph is opened and given a new name, the next step is to past in a 6th Orbit plot as a background. 
In Desmos this can be done by clicking the large + sign in the upper left and selecting Image. 
 

On their plots, Astronomers have assigned north (0°) as straight down, and all angles are measured from 
north clockwise (NESW). In the Cartesian plane, angles are usually measured from the positive x-axis. As 
Desmos operates in the traditional Cartesian plane, the angle of the background plot is set to 90°, rotating 
north so it lies along the positive x-axis. Be sure to click on the Graph Settings wrench icon (upper right) 
and click Degrees, as the default is in Radians). 
 

 
 

Figure 4: Using the movable pointers, P1 and P2, to measure the distance required for scaling. 
 

https://en.wikipedia.org/wiki/Real_image
https://en.wikipedia.org/wiki/Astronomical_object
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Twinkling
https://en.wikipedia.org/wiki/Distortion_(optics)
https://www.desmos.com/calculator/aeem8b6oj4
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The width and height of the background image plot is set by default as 10.0 Desmos units centered on the 
Desmos (0,0) origin as shown in Figure 4. The width and height both need to be equally reduced such that 
the Desmos scale (divisions) match those of the 6th Orbit plot. In the example, moveable points PI and P2 
were moved to the 0.0 and 0.6 tick marks on the 6th Orbit plot, and the distance between them was found 
to be 3.9968 Desmos units. The precise placements of P1 and P2 were made with the graph highly 
magnified. This provided the information needed as two equal ratios: 10 Desmos units (the initial size of 
the background plot) is to the P1-P2 measured distance, as the final height (and width) value is to the 6th 
Orbit scale (tick marks). Thus, the final Desmos plot height (and width) = (10 Desmos units * 0.6 Orbit plot 
units)/3.9968 = 1.5012 
 

Alternatively, clicking on the image will bring up the nine markers used to adjust the background. Any one 
of the four markers can be moved in or out to decrease or increase the size of the background image. The 
position of the primary star (the + on the orbital plot) can then be moved by dragging the center marker 
to position the + (primary star) on the plot to be precisely over the Desmos (0,0) coordinates. Again, 
magnification can aid precision. These two adjustments have to be done recursively as the movements 
interact with each other. 
 
4. Washington Double Star Catalog Observations 
 

The 6th Orbit plots often do not contain the most recent published observations. However, the 
Washington Double Star Catalog, maintained by the U.S. Naval Observatory, is a compilation of all 
published observations, including the first double star observations (Herschel 1785) as well as recent 
unplotted observations. Data on specific binaries can be requested from the Naval Observatory and 
supplied as a text file. In the analysis of binary stars, it is important to include recently published 
observations not yet appearing on 6th Orbit plots, as they are often the most helpful of all past 
observations in interpreting a just completed new observation. 
 

The Washington Double Star Catalog (WDS) text files provided by the Naval Observatory consist of five 
sections: Measures, Orbital Elements, Orbital Ephemerides, Notes, and References. The Measures section 
can be copied into an Excel spreadsheet and (Data) Text-to-Columns applied. Unwanted information (both 
rows and columns) can then be deleted. For this example, just the WDS 16212+2259 Hipparcos and 
speckle interferometry observations were retained as shown in Table 1. A recent unpublished observation 
made on the 1.5-meter telescope at Mt. Wilson Observatory was added as the last row in the table. Also, 
an additional column (far left) was added with labels for the observer and year of observation. 
Bibliography codes in the References section can be pasted into a website (NASA ADS 2023) to download 
most of the references. 
 

The most recent (June 2023) observation of WDS 16212+2259 is reported in this paper for the first time 
as the last row of Table 1. This observation, of course, was not included in the WDS Catalog text file 
received from the Naval Observatory. This binary was observed on the historic 1.5-meter telescope (once 
the world’s largest) at Mt. Wilson Observatory. The instrumentation for the speckle interferometry 
observations and the initial data reduction technique using the Speckle Toolbox (Rowe & Genet 2915, 
Harshaw et al. 2017) have been documented by Faughn et al. (2023). 
 

Table 1 column headers were added for clarification: Label identifies the observer and year, Date is the 
year and fraction of a year when the observation was made, Position Angle (θ°) is the angle of the 
secondary star (in degrees) relative to the primary star (+), Separation (Sep) is the distance between the 
two stars (r") in arcseconds, while Aperture (Ap in meters) is helpful in identifying the observational 
telescope. For instance, 2.5 meters is 100 inches, the famous 100-inch telescope Edwin Hubble used to 
discover the size and expansion of the universe, the Southern Astrophysical Research (SOAR) telescope in 
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Chile is 4.1 meters, while the telescope used at Mt. Wilson Observatory is 1.5 meters. The # is the number 
of nights averaged together to form the reported r and θ. The Reference (Ref) is where the observation 
was published, while Technique (T) is the type of measurement (ones starting with an “S” are speckle 
interferometry, while starting with H indicates a space telescope). 
 

Table 1: Abbreviated extract from the WDS Catalog. 
 

                                                        
 

WDS observations are given as the apparent separation between the primary and secondary stars in 
arcseconds (r), and the position of the secondary star with respect to celestial north in degrees (θ). Note 
that θ is reserved in Desmos for angles. The separation and position angle for each observation, r, and θ, 
are entered, as well as a label for the point, such as the three-letter observer designator and year of 
observation (e.g., Tok2018). Desmos does not directly plot points in polar coordinates, so the (x,y) position 
coordinates are calculated for the ith added (xi, yi) point as (ri cos θi, ri sin θi). 
 

When labels for points are entered in Desmos, it automatically places them at (usually) a good location, 
although their location can be changed for added clarity. Points and their corresponding labels can also 
be color-coded and presented as a filled circle, open circle, or x marks the spot to help avoid confusion. 
Besides entering the coordinates and labels of new observations, it can also be useful to label some 
already included observations on the background, such as accurate speckle interferometry or space 
observations, as these labels can help clarify the analysis. 
 

 
 

Figure 5: Three new and 12 past observations plotted and labeled. 
 

Three new speckle observations (MWO 2023, Tok2021, and Tok2019), 12 past speckle observations, and 
one space observation have been added and labeled as shown in Figure 5. MWO2023 was a recent 
observation made by students and supporters on the 1.5-meter telescope at Mt. Wilson Observatory in 
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June of 2023. If the 6th Orbit plot background image was precisely scaled and translated then, when the 
coordinates are entered for previously plotted observations, the observations will show up as small dots 
in the center of the large blue dots on the plot. 
 

5. General Ellipse Equations 
 

The general equation for the x and y values of an ellipse centered on the origin with its major axis 
coincident with the x-axis is: 
 

x2/a2 + y2/b2 = 1 
 

where: 
a is the semi-major axis 
b is the semi-minor axis 
 

For an ellipse not centered on the origin and not coincident with the x-axis, as is the binary star case, one 
can use the general parametric equations for an ellipse in the Cartesian plane: 
 

x = (h + a cos t)(cos q) + (k + b sin t)(-sin q) 
y = (h + a cos t)(sin q) + (k + b sin t)(cos q) 
 

where: 
a is the semi-major axis 
b is the semi-minor axis 
q is the angle from the x-axis to the ellipse major axis 
h is the offset of the center of the ellipse from the primary star (the “+”) along the ellipse's primary axis 

after the ellipse has been rotated 
k is the y offset of the center of the ellipse from the primary star (the “+”) perpendicular to the ellipse's 

primary axis after the ellipse has been rotated 
(t is just the parametric variable that traces out the ellipse from 0° to 360°) 
 

The (x,y) coordinates of the ellipse center are: 
 

(h cos q – k sin q, h sin q + k cos q) 
 

This is shown graphically in Figure 6 where the line segment from the Primary Star to the First Offset is 
from (0,0) to (h cos q, h sin q) is of length h, and the segment from the First Offset to the Ellipse Center 
is [(h cos q, h sin q), (h cos q – k sin q, h sin q + k cos q)] and is of length k. The line drawn through the 
center of the ellipse at angle q is the major axis of the ellipse. Note that it does not pass through the 
Primary Star at (0,0). 
 

 
 

Figure 6: Ellipse center with respect to the h and k offsets at angle q. 
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6th Orbit Apparent Ellipse Equation 
 

To obtain the five ellipse parameters for the 6th Orbit apparent ellipse, the five parameter sliders can be 
adjusted iteratively until an ellipse (small red dots) in Figure 7 overlays the black line of the 6th Orbit 
published ellipse. 
 

 
 

Figure 7: Ellipse (red dots) overlaid on the solid black line 6th Orbit ellipse. 
 

An easier and more accurate way to obtain the apparent ellipse parameters is to analytically derive them 
from the true Orbital Elements published in the 6th Orbit Catalog (included in the WDS data supplied by 
the USNO on individual binaries). The new Orbits routine (Rowe & Genet 2024) in the Speckle Toolbox 
derives the apparent ellipse parameters from the true orbit parameters. The semi-major and semi-minor 
axes, as well as the rotation angle of the ellipse, can be entered directly from Orbits into Desmos, but the 
x,y offsets in Orbits have to be translated into the h,k Desmos offsets at the angle (q in Desmos) by: 
 

h = x cos q + y sin q 
k = y cos q – x sin q 
 
6. New Apparent Ellipse 
 

The apparent orbit shown in Figure 7 (black ellipse overlaid with the red dot ellipse) was calculated by 
Hartkopf (2010) without the benefit of the five speckle observations made since his analysis. Given this 
new information, a new apparent ellipse was created in Desmos that fits the speckle interferometry points 
better than Hartkopf’s 2010 orbit. Starting with the 6th Orbit apparent ellipse, the five parameters were 
adjusted to fit an ellipse to the speckle and space observations. The visual observations (green +) were 
not considered while making this fit as their accuracy was low for this small-separation binary. The result 
is shown in Figure 8. As can be seen (and expected) the new ellipse provides a significantly better fit to 
the speckle observations. 
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Figure 8: Apparent ellipse fitted to speckle interferometry and space observations.  
 

Table 2 lists the values for the five ellipse parameters for both the original (black) apparent ellipse and the 
new (red) apparent ellipse.  
 

Table 2: Ellipse parameter values for WDS 16212+2259 new orbit and 6th Orbit Catalog original ellipse. 
 

 
 

If the recent observations added in the Demos analysis do not suggest a systematic departure from the 
published orbit, then the Desmos apparent orbit analysis is completed. If, as is the case here, there is a 
significant, systematic departure from the published orbit, then a new orbit could be calculated, a 
procedure beyond the scope of this paper. 
 
7. Conclusion 
 

Desmos, combined with plots from the 6th Orbit Catalog and observational values from the Washington 
Double Star (WDS) Catalog can be used to analyze the apparent orbits of known binaries. Desmos 
combines mathematical precision with intuitive visual displays. 
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